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A Framework for an On-Line Diagnostic 
Expert Systemwith with Intelligent Sensor Validation 
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This paper outlines a framework for performing two different but inter-related functions in 

diagnosis, i. e. sensor validation and reasoning under uncertainty. Sensor validation plays a vital 

role in the ability of  the overall system to correctly determine the state of  a plant monitored by 

imperfect sensors (Sopocy, 1990). Two subsystems, Algori thmic (ASV) and Heuristic (HSV) 

Sensor Validation, separate activities according to the degree of plant knowledge required and 

represent Sensor Validation Expert System when combined. Uncertain information in sensory 

values is represented through probabil i ty assignments on three discrete states, High, Normal, 

and Low, and addit ional  sensor confidence measures in ASV. HSV exploits deeper knowledge 

about parameter interaction within the plant to cull sensor faults from the data stream. Finally 

the modified probabil i ty distributions and validated data are used as input to the reasoning 

scheme which is the run-time version of  the influence diagram. The influence diagram represents 

the backbone of reasoning under uncertainty in Influence Diagram Knowledge Base. 
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I. Introduction 

Diagnosis consists of  the two different but 

closely related procedures. The first step is to 

receive responses of the system through measuring 

devices, i. e., sensors. From the imperfect nature 

of sensors, uncertainties are naturally introduced 

in the responses. The second step is to make a 

decision on the state of  the system based on the 

sensory values. Lots of  uncertainties are 

introduced at this stage not only because we have 

to make a decision on information with a degree 

of uncertainty but because the decision itself 

depends on one's preference. However, we cannot 

afford a spectrum of different decisions based on 

the similar responses of the system by an operator, 

since the decision can be very critical both in 

economical and preventive point of view. In order 

to guarantee a uniform decision based on the in 

formation, researchers seek a way of  using a 
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computer to mimic human reasoning. Expert 

system technology is to analyze experts' reasoning 

under a certain circumstance and implement this 
knowledge to the computer in a form of  rules, 

data base, etc. Monitoring and diagnostics have 

proven to be successful application areas of expert 

systems (Milne, 1987). There have been a number 

of sensor-driven applications in manufacturing 

and process control  (Agogino, 1988; Paasch, 1991 

and Kim, 1995) where the degree of validity of 

sensor readings proved to be a major factor in 

determining the accuracy of the diagnosis and the 

usefulness of  the resulting corrective recommenda- 

tions. The objective of  this paper is to outline a 

framework and a set of  tools for performing 

sensor validation and reasoning under uncer- 

tainty in expert systems and describe their imple- 
mentation in H E A T X P R T  TM, a data-driven on- 

line expert system for monitoring and diagnosing 

heat rate degradation problems in fossil power 
plants. 

In developing a framework for a diagnostic exp- 

ert system, we set three essential tools as follows; 
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1. we need an analyzing tool for uncertain 

information, since sensory values are not deter- 

ministic. Thus, we have to utilize statistical 

methods :in dealing with sensory values, 

2. we need a representational tool for uncertain 

information, since the mapping from quantitative 

(numeric) value to qualitative (symbolic) value is 

not one-to-one. 

3. we need a diagnosing tool for uncertain 

information, since the human reasoning is not 

well represented by the binary logic. 

Sensor validation is a major concern for any 

on-line diagnostic expert system; the large number 

of  inputs needed for enhancing the system perfor- 

mance has led to the development of a preprocess- 

ing module dedicated to analyzing and correcting 

sensor input. Various methodologies have been 

applied to assessing the degree of validity of 

sensory input in power generation (Irving, 1985 

and Hashemian, 1988). Most calculate statisti- 

cal features of sensory data for comparison to 

normal or previously identified abnormal situa- 

tions. What is generally lacking is a coherent 

method for establishing and updating both the 

uncertainty in the data stream and the confidence 

to be placed in a given reading. In order to do this 

task, we develop a Sensor Validation Expert 
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Fig. 1 Schematic diagram of main functional blocks of 
diagnostic expert system, HEATXPRT TM (Kim, 
199,1a) 

System (SenVES) as shown in Fig. 1. 

The first level of  SenVES in our framework, 

shown in Fig. 1, will be referred to as Algor-  

ithmic Sensor Validation (ASV) (Kim, 1994a). 

Various algorithmic schemes to assess these prob- 

abilities from the on-line data and the plant- 

specific data files will be described in the next 

section of this paper. 

The second phase of  our system, Heuristic 

Sensor Validation (HSV), investigates possible 

malfunctions for normal behavioral explanations 

(Kim, 1994b). Expert heuristic and first principle 

information of  the plant physics (e. g. comparison 

of upstream and downstream values) are among 

methods used in HSV for updating probabi l i ty  

distributions and sensor confidence measures. 

Another aspect of  HSV concerns the fusion of  

information from redundant or coupled sensors 

measur ing  a single pa ramete r .  P rev ious  

approaches include: majority voting (Frogner,  

1988), averaging with equal weight,~ (IEEE, 

1977), and averaging with unequal weights with 

conditional probabili t ies (Agogino, 1988). All  of 

these techniques provide the means for determin- 

ing a single virtual value for redundant sensors, 

but none takes into account integrity of the sensor 

reading. We present a method that combines 

multiple sensor readings with each sensor confi- 

dence measure. 

The depicted framework ends with validated 

data and updated probabil i ty distributions being 

input into the Influence Diagram Knowledge 

Base (InDiaKB) (Kim, 1993). Sets of  discrete 

marginal and conditional probabili ty distribu- 

tions define the parametric form of the influence 

diagram which can be tailored to the operating 

history of the target utility. Quantification of  the 

probabilist ic relationships is based on statistical 

data where available, e. g. maintenance data, and 

on the experts' experiential knowledge, including 

the experts' assessment of the conditional proba- 

bilities of failures given ranges of  sensor readings 

(Kim, 1994a). Since the knowledge and the infor- 

mation within the influence diagrams are usually 

plant specific, the InDiaKB should be different 

from plant to plant. Here, we introduce the InDia-  

KB of  H E A T X P R T  TM and provides an example 



12 Young-fin Kim 

influence diagram of heat rate failure in 

feedwater heater in Sec. 4. 

2. Algorithmic Sensor 
Validation(ASV) 

In identifying the statistical characteristics of 

sensors and their data, we need a key parameter 

so that we can make a prediction on other param- 

eters based on it. The key parameter should have 

a good correlation with other parameters. Also 

the sensor for this key parameter should have a 

low precision errors in measuring the values. This 

key parameter turns out to be the gross genera- 

tion, which is the output of the power plant. 

Figure 2 shows a strong correlation between gross 

generation and parameter. With this strong corre- 

lation, we can safely represent a specific parame- 

ter values as a function of gross generation. Also 

it turns out that the representation of parameter as 

a function of gross generation is the most efficient 

way in reducing calculation time and database 

storage. 

The ASV module integrates several statistical 

methods for characterizing the sampled sensory 

data. A check for transient behavior is first perfor- 

med to guarantee that all diagnoses are performed 

on steady state values; many of the algorithms and 

heuristic in HEATXPRT TM do not apply under 

transient conditions generated by start-up and 

large load swings. The elimination from consider- 

ation of data collected during such transients 

provides a stable basis from which trend analysis 
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Fig. 2 Strong corre la t ion  between a parameter  and 

gross generat ion ( load)  

can be used to predict future states of the system, 

providing early warnings for potential failures 

and enabling early corrective action. Because 

transient operation must be defined so that nor- 

mal load dispatch commands do not disable the 

expert system, a tuneable transient state detector 

has been implemented as part of ASV. 

The need to represent the state of the plant over 

a time period of ten minutes forms the basis for 

ASV. An estimate is required which takes into 

account both variation in operation and uncer- 

tainty in measurement. Deterministic values cer- 

tainly cannot accurately represent the state of a 

dynamic plant over a ten minute period; a statisti- 

cal distribution is used to Characterize the uncer- 

tainty in the data stream. Ten one-minute average 

data points generate a distribution that is discret- 

ized into three states: High, Normal, and Low, 

based on the upper and lower warning limits 

designated for each sensor. Analysis of typical 

plant data has shown that the Gaussian (normal) 

distribution can be used to represent sensor data 

without significant ( <  39/o) integrated error 

(Kim, 1994a). Upper and lower warning limits 

used as probability density function integration 

limits for discretization are set to values which 

indicate a potential problem in the heat rate of the 

system. The nature of plant operation is such that 

these limits vary with operating point and so are 

represented by quadratic functions of gross gener- 

ation (load). Warning limits are essential to the 

D e n s i t y  
S a m p l e d  

D i s t r i b u t i o n  

P a r a m e t e r  

Fig.  3 Ca lcu l a t i on  of  sensor confidence in two distr i -  

bu t ions  inc lud ing  bo th  mean and s tandard  

devia t ion  (Kim,  1994a) 
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proper determination of process state and have 

required considerable attention from the heat rate 

experts. 

The generation of warning limits based on the 

learning set is illustrated in other paper (Kim, 

1994a). Warning limits are not the only aspect of 

operation that has been characterized by func- 

tions of load; target values and replacement limits 

are also represented by quadratic equations. 

Some error correction does take place in the 

ASV module. Replacement limits represent 

parameter values which are never reached during 

plant operation and thus represent clear cases of 

sensor failure. In these cases and in cases where 

an input datum is missing, the target value is 

substituted. Probability distributions are generat- 

ed using lhese target values (they vary according 

to load wlriation) and then analyzed by HSV. 

The final responsibility of ASV is the assess- 

ment of the integrity of an input sensor value. One 

method for quantifying sensor confidence is to 

calculate the similarity of the data stream to a 

reference distribution of a typical sensor of the 

same clas,; for a specific level of gross generation. 

A sensor confidence measure determines the reli- 

ability of sampled sensor value distribution based 

on a reference distribution. Sensor confidence 

measures are given in terms of a metric (distance) 

between two probability density functions (Fig. 

3). The numeric value of sensor confidence repre- 

sents the closeness between two distributions. If a 

scale over ~0,1] is used, ~0] implies completely 

independent distributions and ~1~ represents 

identical distributions. Due to its computational 

efficiency and empirical accuracy (Kaliath, 1967) 

(Bhattacharyya, 1943) (Matusita, 1955) (Kobaya- 

shi, 1967) for the class of distributions in our 

application, the Bhattacharyya Coefficient is cho- 

sen as an appropriate measure in HEATXPRT TM. 

Kim has developed the mathematics necessary 

to apply the Bhattacharyya Coefficient to our 

application (Kim, 1994a). As a distance measure, 

it has the desirable property that it decreases or 

increases accordingly to the probability of error 

as defined by the Kolmogorov Distance (Kaliath, 

1967). This measure of confidence can also be 

easily updated in cases where HSV updates the 

initial probability distributions calculated by 

ASV. It is used by HSV as one of the criteria for 

further examination of the operation of a sensor. 

3. H e u r i s t i c  S e n s o r  V a l i d a t i o n  

Heuristic Sensor Validation (HSV) synthesizes 

the results generated by ASV with system charac- 

teristics to differentiate sensor failures from proc- 

ess deviations. Ideally the output of HSV is a set 

of sensor values, probability distributions, and 

confidence measures that represents all of the 

deviations from normal caused by operational 

problems and none of those caused by sensor 

malfunctions. The following techniques are used 

by HSV to accomplish this separation (Kim, 

1992) : 

�9 Performance experience 

�9 Connectivity of subsystems 

�9 Sensor redundancy 

�9 First principles 

Exploiting these sources of knowledge, HSV 

updates the sensor probability distributions and 

confidence measures when inconsistencies are 

identified. These modified distributions are then 

used as input to the influence diagram knowledge 

base and the rest of the HEATXPRT TM knowl- 

edge base. 

3.1 Connectivity of subsystems and its exam- 
ples 

The scope of analysis performed in ASV is 

limited to data readings from a single sensor and 

a probability distribution on past readings. Power 

plants contain many subsystems which are re- 

presented inside the expert system as a set of 

operationally interdependent parameters. In addi- 

tion these subsystems are interconnected to make 

up the overall plant, extending the scope of sub- 

system models to neighboring subsystems. There 

exists a wealth of information usable for valida- 

tion that cannot be applied on a single sensor 

basis as in ASV. In our framework, it is the job of 

HSV to exploit these additional sources of knowl- 

edge. 

Fortunately, there are some desirable features 
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of data we have seen in our prototype develop- 

ment of  a feedwater heater expert system. While 

plant operating points vary widely over time, a 

repeatable pattern of  parameter behavior with 

respect to gross generation as explained in the 

previous section is present. Subsystem parameters 

closely follow quadratic polynomial  relationships 

to gross generation. Once gross generation is 

parameterized out of  the data stream, a further 

relationship among the data can be recognized: 

subsystems of the power plant operate in a 

multivariate Gaussian distribution with strong 

covariance within equipment and across equip- 

ment connections. This distribution forms the 

backbone of HSV, allowing the discrimination 

between sensor faults and process deviation 

through relatively simple calculations. Covarian- 

ce among parameters provides for us a large set of  

relationships for cross-checking plant operation 

versus sensor behavior. 

A multivariate Gaussian probabili ty density 

function can be used to represent parameter value 

(corrected for plant load) behavior in equipment 

groupings: 

e-~-[x~R-,xl 

p( x ) =(2_ rc)~-I IRI I; ( 1 ) 
where: p = t h e  probabil i ty density function 

x = t h e  vector of subsystem parameter val- 

ues (normalized) 

R--~the covariance matrix 

The performance of the plant can be analyzed 

with respect to its predicted behavior described by 

a quadratic curve fit for each operating parame- 

ter. Is the difference between observed and 

predicted values systematic or is it random? If  it is 

random, there is not much that can be done 

beyond ASV; HSV becomes just a set of  special- 

ized rules instead of  a flexible approach to data 

validation. In order to decide whether perfor- 

mance deviation is systematic, we can look at an  

example from the feedwater heater prototype 

system. Figures 4 through 6 plot three tempera- 

tures in the feedwater heater normalized for 

predicted behavior (simply subtracting the curve 

fits out of the data stream). They show that  there 

is a clear systematic deviation from the predicted 

performance curves. The set of  probabili ty distri- 

butions used to approximate the behavior of  

individual sensors can be extended to sets of 

sensors such as these through modeling this sys- 

tematic behavior (Kim, 1994b). 

Of note in Figs. 4 through 6 is the nice cluster- 

ing of the data. This shows that there is high 

covariance of each parameter with respect to the 

others. This is an important aspect of the data 

that can be exploited through the above 
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mentioned multivariate Gaussian probability dis- 

tribution. The data from Figs. 4 through 6 can be 

summarized nicely by a mean vector of length 

three and a covariance matrix of dimension three 

by three. These are: 

�9 [ ' 9"0035] '  [ 0.621 0.331 0.189 1 
/zT=|  0.0068 R =  0.331 0.569 0.339 

L-0.0037 0.189 0.339 0,849 

Thus, a model for a subsystem can be encoded 

using only a covariance matrix whose dimension 

is that of the number of parameters in the model 

(the mean vector is zero for values that have been 

adjusted for expected (target) value). This encod- 

ing scheme is not handicapped by its simplicity: it 

handles errors in the curve fits, seasonal operating 

changes, and missing data with approximation. In 

cases where data does not cluster as well as seen 

in Figs. 4 through 6, sums of multivariate Gaus- 

sian distributions can be used. Thus, we have 

provided a robust and flexible means of handling 

expertise about subsystem operation within a 

power plant. 

3.2 Sensor redundancy 
Redundant sensors cause problems of their own 

in the operation of a plant; in the words of an 

expe r t , / / you  have one sensor, y o u  k n o w  exact ly  

what  is going on. A d d  a second  sensor  a n d  y o u '  

re no t  quite sure. HSV improves the evaluation of 

single sensor data through the use of a load 

independent multivariate Gaussian distribution 

on subsystem operation. The same distribution 

can be used in several ways to merge multiple 

measurements of the same process variable The 

subsystem distribution can be coupled to good 

parameter values to provide a prior distribution 

of process variable values. If a probability distri- 

bution of sensor behavior (including likely failure 

modes) given variable value can be constructed, 

Bayes' rule can be used to combine evidence from 

redundant sensors. 

Barlow et al. (Barlow, 1986) investigated this 

situation and developed an appropriate utility 

function, based on the idea that the decision 

maker only exercises minimal judgment relative 

to random quantities of interest. This idea is 

similar to that of sensor confidence, which was 

investigated in the previous section, where the 

sensor confidence is calculated between probabil- 

ity distributions among sampled and a reference 

distribution (Kim, 1994a). Thus using the normal- 

ized sensor confidence as the weights in Barlow's 

equation, we can provide a better consensus on 

the posterior distribution by the decision maker. 

f (x) = ~w~fl (x), where w~->0 and ~vvj = 1 
l 1 

w , =  f~ (2) 

where P~ sabscript is the i-th sensor confidence. 

The sensor confidence is calculated by Eq. (2). 

One of the advantages that the sensor confidence 

method described here has over the method 

proposed by Barlow et al. is that it uses a continu- 

ous density function as the distance measure, and 

thus can be used for a range of uncertainties in the 

feature values from the sensor signal. 

Bayes' rule is applied to create an updated 

probability density function given all sensor val- 

ues recorded for the parameter in queslion along 

with its subsystem model (Winkler, 1972). The 

general form of Bayes rule for this case is given: 

, , , p(xly)p(y) 
PtYlX/= p(x) (3) 

where: 
+ ~  

p ( x ) =  f p(xly)p(y)dy 

p (x ly )=The  probability density function of x 

given y 

p(x) : T h e  probability distribution of x 

y =:The actual value of the parameter 

x = T h e  value of the sensor reading 

Sensor readings are independent of each given 

the value of the parameter being sensed (1. e. a 

sensor's measured value depends only on the 

actual value, not other sensors' measurements), so 

Eq. (3) can be applied to multiple redundant 

sensors. Eq. (4) is the resulting probability density 

function for the parameter value after sensor 

fusion. In addition, all scaling constants have 

been grouped together as K (Kim, 1994b). 

p(Ylx>.xN) = Ke-�89 ~ ]  (4) 
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Unlike the case of  a M A P  estimate where a 

single maximum value of  the distribution is used, 

other characteristics of  the distribution are captur- 

ed in Bayesian sensor fusion. Figure 7 shows sets 

of system model-generated distributions for situa- 

tions where there is a varying degree of covarian- 

ce. Note that the three curves shown have then 

same MAP estimate point but differ greatly in the 

error associated with this value. Thus, the predic- 

tive quality of  the subsystem model is used to 

determine the best parameter value estimate. An 

ML estimate requiring that an actual sensor be 

associated with the parameter value cannot 

exploit this information (Kim, 1994b). 

4. Inf luence  Diagram Knowledge Base 

Diagnosis is the process of determining the 

state of a system based on system observable 

(Paasch, 1991). It is sometimes viewed as an 

inverse mapping of the causal behaviors of the 

system; this mapping rarely enjoying a one to one 

correspondence. The correspondence between 

observable and failures becomes even more diffi- 

cult in situations where there is some uncertainty 

in both the mapping and in the observable them- 
selves (Milne, 1987). In H E A T X P R T  TM, an influ- 

ence diagram knowledge base is used to represent 
and process this uncertainty. 

Influence diagrams have proven successful in 

complex decision making problems with uncer- 

tainty, by graphically representing the diagnostic 

problem domain through simple topological sym- 

bols and arcs between them (Pearl, 1988). Knowl- 

edge engineering schemes (Moore, 1985) allow 

them to exploit both first principle knowledge of  

a system along with subjective assessments based 

on experiential knowledge. Bayes' Theorem is the 

backbone of the influence diagram inference 

procedure. The role of influence diagrams in 

diagnostic expert systems is to identify the neces- 

sary relationships between parameters in the 

domain and represent and exploit condit ional  

independence where possible. Thus the operator '  

s expertise, the first principles, and the sensory 

data are integrated into the three representational 

levels of the diagram: the topological, numerical, 

�9 and functional levels. The topological level of the 

influence diagram is a simple representation of  

the problem using a combination of nodes and 

arcs, where nodes represents critical parameters 

and decisions, and arcs representing the func- 

tional relationships among parameters. The lack 

of an arc is the most important information at the 

topological level, signifying a statement of condi- 

tional independence. The nature of the influences 

is determined at the functional level and further 

quantified at the numerical level. Bayesian proba-  

bilities are the mathematical functional measure 
used in H E A T X P R T  TM. 

There are many approaches to solving influ- 

ence diagrams and Bayes belief networks (influ- 

ence diagrams without decision nodes) (Pearl, 

1988). The IDES (Influence Diagram Based 

Expert System (Moore, 1985; Agogino, 1987 and 

Agogino, 1990), developed at UC Berkeley, was 

used as a preprocessor to create the run-time 

version of  the influence diagram knowledge base 

in H E A T X P R T  TM. This is stored as a matrix of 

numerical solutions for every combination of 

qualitative ranges on the input sensor values. 

Although the goal of the diagnostic procedure 
is to infer heat rate degradation in the system 

from the measured sensory values, the influence 

d iagrammodel  was constructed in a causal direc- 
tion. There are four major reasons for this: 1) 

numerous studies have shown that humans are 

poor Bayesian and that the integrity of subjective 

probabilities assessed for this kind of diagnostic 

mapping is questionable, 2) the causal mapping 
allows the use of first principle information in 
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@ 

Fig. 8 Influence Diagram for Tube Blockage (Kim, 
1993) 

constructing the model, 3) a causal model allows 

for parametrizing the prior probabili t ies of fail- 

ures to take into account individual utility in 

power plant maintenance, reliability and heat rate 

performance histories, and thus 4) the causal 

mapping enables easier updating of  the under- 

lying prior and condit ional  probabili t ies as more 

operating experience is gained. Much of the influ- 

ence diagram knowledge base was derived from 

previously developed logic trees and first princi- 

ple relationships between measured parameters 

(sensors) and calculated parameters. Utility 

experts and consulting engineers identified the 

critical variables and the relationships between 

measured parameters and heat rate degradation 

failure modes. The major knowledge acquisition 

tasks are listed. (Kim, 1993) 

An example influence diagram is shown in Fig. 

8. The model is causal in the sense that the likeli- 

hood of achieving certain sensor value ranges is 

conditioned on the failure state of the system. In 

this example, the failure mode is internal fouling 

of the tubes in the feedwater heater. Major  influ- 

ences between measured parameters and the fail- 

ure are identified by the arcs and conditional 

independence are implied by the missing arcs in 

the diagram. Condit ional  and prior probabili t ies 

were assessed from experts and from statistical 

data supplied by EPR1. 

Verification of  an influence diagram should 

include comparison of  its results with the actual 

diagnosis of experts over various sets of  condi- 

tions. The only verification of influence diagram 

so far, however, is to test for two desirable charac- 

teristics with appropriate  sensitivity to critical 

and non-critical parameters. When there is more 

than one failure with similar symptoms, the abil- 

ity to distinguish which parameter is critical to 

the actual inference is indicative of one of  the 

desirable characteristics of  an influence diagram. 

Using this criterion, influence diagrams are 

evaluated lbr two failures: Tube Fouled Inter- 

nally and Tube Blockages (Kim, 1993). Later, the 

resulting probabili t ies of each failure in the 

feedwater heater are calculated over a different set 

of parameter states. The results of this calculation 

is listed in Table 1. (Kim, 1993) 

Table 1 Calculation of resulting probabili t ies for two failures with similar symptoms (Kim, 1993) 

Parameters  Case 1 Case 2 Case 3 Case 4 

Turbine Extraction Pres. Normal Normal Normal Normal 

FW Heater Shell Pres. 

FW Heater Drain Temp. 

FW Inlet Temp. 

FW Outlet Temp. 

Sat. Stm. Temp. 

Failures (TRUE, FALSE) 

Tubes Fouled Internally 

Tube Bolckage 

Normal 

High 

Normal 

Low 

Normal 

(0.35, 0.65) 
(0.01, 0.99) 

High 

Normal 

Normal 

Low 

Normal 

(0.35, 0.65) 
(0.24, 0.76) 

Normal 

Normal 

Normal 

Low 

Normal 

(0.01, 0.99) 
(0.01, 0.99) 

High 

High 

Normal 

Low 
Normal 

(0.97, 0.03) 
(0.24, 0.76) 
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5. Conclusion 

This paper outlines a framework and methodol- 

ogy for performing sensor validation in HEATX-  

PRT TM, a data-driven on-line expert system for 

monitoring and diagnosing heat rate degradation 

problems in fossil power plants (Sopocy, 1990). 

The sensor validation system consists of both 

algorithmic and heuristic modules, including both 

qualitative and quantitative approaches. We 

believe that the architecture and techniques de- 

scribed can be applied to any number of  on-line 

expert system applications in which the degree of 

validity of  sensor readings is a major factor in 

determining the accuracy of the diagnosis and the 

usefulness of  the resulting corrective recommenda- 

tions. 
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